发布时间:2022-12-31 文章来源:深度系统下载 浏览:
网络技术是从1990年代中期发展起来的新技术,它把互联网上分散的资源融为有机整体,实现资源的全面共享和有机协作,使人们能够透明地使用资源的整体能力并按需获取信息。资源包括高性能计算机、存储资源、数据资源、信息资源、知识资源、专家资源、大型数据库、网络、传感器等。 当前的互联网只限于信息共享,网络则被认为是互联网发展的第三阶段。 1、传送网的发展现状与面临的挑战 1.1从MSTP谈起 以MSTP/ASON为代表的传送网技术有许多新特点。MSTP在传统SDH基础上,通过IP/ATM等多业务接入能力的引入,在业务接口上提供了以太网类接口和ATM类接口,是一个可以直接同数据业务进行接口的传送平台。在现有网络环境下,MSTP在承载原有TDM业务的同时,可以开展多种高可靠性、大容量的新业务,如以太网专线、点到多点以太网、以太环网等业务;为大客户提供综合接入;实现DSLAM到BRAS的接入与汇聚;作为3G业务的传输手段等。 无论从提供的业务还是从名字上看,这种系统已经在传送上实现了多种业务的相对融合。当新业务(或者其接口)出现的时候,系统似乎只需要添加相应的接口便可以了。那么为什么说从发展的角度看,这种已经比较完善的架构不是下一代的方向呢? 在回答这个问题之前,我们先来回顾一下传送网发展的历史。图1抽象地显示了传送网发展的历史。光通信伊始,人们开发了PDH设备(图1a),该类设备在业务接口侧提供了2Mbit/s(或1.5Mbit/s)的基群接口。虽然有被称作是光的处理,但基本上是5B/6B码型和1B1H码型的电信号层处理。 自20世纪90年代开始,SDH设备(图1b)通过同步性能的改善,首次提供了灵活的业务颗粒(如虚容器VC-12和虚容器VC-4)调度能力,将传送网的组网和保护功能发挥的淋漓尽致。因而,SDH技术作为传送网主体技术以其特有的优势在传送网中占据了绝对主导地位,为电信运营商业务的发展发挥了巨大作用。 WDM设备(图1c)则首次拓展了光领域,充分利用光纤通信的波分特性,大大提高了传送网的容量。自20世纪90年代中期商用以来,WDM系统发展极为迅速,已成为实现大容量长途传输的主流手段。不过,现阶段大多数WDM系统主要用在点对点的长途传输上,联网依然在SDH电层上完成。在条件许可和业务需要的情况下,在WDM系统中有业务上下的中间节点可采用OADM设备(图1e),从而避免使用昂贵的OTU进行OEO变换,节省网络建设成本,增强网络灵活性。目前具有固定波长上下的OADM已经广泛商用,而能够通过软件配置灵活上下波长的动态可重构OADM(ROADM)也开始步入市场。同时随着160×10Gbit/sDWDM系统的成熟,在业务量大的地区新建WDM系统已越来越多地引入80/160×10Gbit/s的系统。 面对电信业务的加速数据化和IP化以及多样化的业务环境,SDH技术加强了支撑数据业务的能力并向多业务平台发展,形成SDH多业务平台(MSTP)(图1d)。SDH多业务平台的基本思路是将不同的业务,通过VC级联等方式映射进不同的SDH时隙,而SDH设备与二层设备乃至三层分组设备在物理上集成为一个实体,构成具有业务层和传送层一体化的网络节点。 作为SDH设备的改进,MSTP所改善的是在用户接口一侧,但是内核一侧却仍然是电路结构。因此,可以说MSTP技术向包处理或IP化的程度不够彻底。随着TDM业务的相对萎缩及“全IP环境”的逐渐成熟,传送设备要从“多业务的接口适应性”转变为“多业务的内核适应性”(图1e),分组传送网迎合了这种趋势。 1.2下一代传送网面临的挑战 当以“三超”(超大容量、超高速、超长距离)DWDM为代表的传输技术在扩展着自己领域的时候,传送技术在业务接口侧出现的问题——业务的接口不匹配导致业界必须重新审视和探索新的传送网结构。 随着以Internet为代表的数据业务和多媒体业务的不断发展,电信运营格局的变化,业务的传送环境发生了很大变化。传送网在图1所示业务接口层的基础结构被打破了,以2Mbit/s(或1.5Mbit/s,或SDH155Mbit/s)为颗粒的基本单位不再是普遍的用户接口。新业务的接口主要是针对数据应用,同时一些传统的业务也转移到IP的承载方式,如VoIP语音业务。业务的接口形式也变成了以太网接口、POS接口以及少数的ATM接口。 应当说,作为传送技术与数据通信技术融合(某种意义上的妥协),MSTP传送技术及设备在传送网向分组传送(交换)方向前进了一步。MSTP中通过使用GFP封装、VC虚级联、LCAS(链路容量调整)等关键技术,对新业务提供延伸的接口。引入MSTP以后,对于现有的IP城域网和ATM网,MSTP可以为其提供接入和汇聚,扩大以太网业务与ATM业务的覆盖范围,确保各网络协调发展和相互配合,因而MSTP上通过数据接口功能的增加,实现了对现有数据业务的有效补充,保护了现有投资。 但是MSTP传送技术及设备也碰到一些制约因素(障碍)。首先,利用MSTP实现各类业务网在汇聚层和接入层的合网建设,必然会带来如何进行网络和业务管理等问题,因此在引入MSTP的同时,还要注意适当重组业务流程和网络管理流程,以适应业务综合和网络融合的趋势。其次是MSTP处理颗粒(接口速度)的不匹配:MSTP以2Mbit/s速率及其虚级链来转送以太网业务,这就如同拿一把尺子来称苹果的重量一样不太合适。事实上,MSTP的内核是VC-12或者VC-4的交叉粒度来完成以太网的分组传送。在面向群路侧的处理对象是VC-4,不清楚也不能适应VC-4内包的传送。对于以太网而言,包长是变化的,流量是突发的。传统的SDH传送网对于基于分组化的业务和新的业务提供方式,存在着诸如业务指配处理复杂,带宽效率低,成本高,网络扩展性差等缺点。对于MSTP的交换平台,核心结构为交叉式电路方式的时隙交换,不能有效利用统计复用特性。 既然MSTP在下一代传送技术候选存在问题,那么当今市场上的宠儿ASON能否就是下一代网的雏形呢?答案也是否定的。ASON严格来说不是一种传送设备,毋宁说它是一种控制平面。而且当今的ASON的连接或是ASON设备的处理粒度也是VC-4,即便是将来可以在基于波分层面的2.5Gbit/s的调度和基于VC-12颗粒的调度,其所处理的对象也无根本性的变化。 根本的原因在于,IP包交换无疑已经牢牢占据了现代网络的统治地位。因此下一代的承载传送网必然是基于分组的。但是传送网分组交换的具体方式是怎样的呢?传送网在传送数据大量增加,数据传输容量超过电路交换的同时,专家们开始重新审视下列核心问题:传送网的核心处理机构是什么?核心处理机构对传送网新的处理对象是什么?以传送为目的的处理层次又是什么? 传送网是否需要将包的处理技术全盘拿来?典型的,是否需要将以太网的2层处理技术,或者是3层处理技术作为传送的处理,例如可以直接处理IP包呢? 早期的研究提出了IPoverWDM的概念,连所有2层功能都舍弃,将IP包直接调制到波长上,似乎路由器接一个光接口就是未来的网络。这种模型认为IP等数据包通过相应的封装技术(例如POS、GFP)就可以直接由WDM或OTN网络传送,从而省去了ATM甚至SDH/SONET层面。同时,只需过度建设(Overbuild)超大容量的光传输网,IP业务的业务质量(QoS)就可以得到保证。然而,这种网络模型被证明是一种价格昂贵的建网方式,其主要原因是IP路由器的POS(PacketoverSDH/SONET)接口和WDM系统的波长转换器(OTU)价格都较昂贵,采用过度建设(Overbuild)的策略将使网络成本居高不下。 另外的研究认为,传送网如果要发展,必须要增加传输设备的协议处理层次,到ISO七层协议的2层和2层以上进行处理。对上述问题的回答可以说是众说纷纭,莫衷一是。 其实ATM的方向的初衷是对的,那就是使用标签技术。只不过是,ATM技术考虑对业务的界面不够友好,业务在封装成53byte信元的时候,有5byte的开销(被称为“信元税”)。其核心原因是只考虑了交换与传输技术的技术要求,而对业务接口的兼容性考虑不够。其次,由于实际的网络中人们已经普遍采用IP技术,纯ATM网络已经不可能。不过既然现有ATM传送网络都是用来承载IP,如此人们就希望新建的分组传送网也能像ATM一样提供多种类型的承载能力。 2、传送网体系架构的要求 2.1具有面向包的处理能力通用平台 尽管IP数据业务所占用的带宽已经在某些运营商的网络中超出了传统的语音业务所占用的带宽,可是从业务收入角度来说,语音业务的收入现阶段仍然是运营商最主要的收入来源。因此,有必要建立一个新的传送网络体系结构,既可以面向包括传统语音业务在内各种业务接口,又可以具有统一的处理平台,以便更经济有效地支持大容量的多种业务的应用。 这种新的传送网络体系结构不会凭空产生,而应该兼容现有的协议,在各种协议“你中有我,我中有你”的现实环境中定义自己的位置。这就需要传送网络体系结构是具有包的通用处理能力的平台,具有通用的层间接口协议,既可以接受各种客户层协议,也能利用各种下层协议(服务层)提供的连接路径(trail)或服务。 同时这种新的传送网络体系结构需要考虑IP数据业务量的突发性和不确定性,这需要为传送它的光网络带宽实行动态分配和调度以实现有效的网络优化,这种优化可以减少全网中所需光接口(POS接口和OTU接口等)和相应波长的数目,既大规模降低建网成本,又提高带宽利用率。 再者,对于实现TDM业务的无缝连接来说,可采用电路仿真业务的方式解决业已存在的电路型业务(POTS6,E1/T1和N×64kbit/s等业务)。 2.2具有极强的可扩展性 目前主流的2层协议例如以太网协议的可扩展性存在问题。主要表现在以下4个方面:VLAN的标签空间太小,只能有4096个VLANID;生成树过大;MAC地址表巨大(而运营商网络有几万个到几十万个主机);安全问题。从数量来讲运营商网络有几十万个虚连接,带宽在10Gbit/s以上。802.1ad标准通过定义StackVLAN解决了虚拟VLAN的标签空间太小的问题。 但是上述生成树过大和MAC地址表巨大的问题依然存在。解决这些问题显然需要将运营商网络同用户的网络隔离,同时网络使用层次化结构是解决可扩展性和安全问题所熟知的方法。 2.3具有运营管理维护(OAM)和保护 快速业务生成隐含着具有业务(业务产品)的再工程设计能力。由于业务的不确定性,运营者必须快速反应,调整业务或有限的扩展业务。这将增加系统的业务(业务产品)的再(重新)工程设计能力,可以平滑过渡到新的运营形式,从而影响成本,降低再投入。 运营级的OAM能力通常需要系统管理业务具有端到端业务服务等级协议(SLA),例如端到端的CIR和EIR,和采取连接故障管理等措施。 保护特性上的典型要求是50ms的保护倒换时间,端到端的通道保护以及群路线路保护和节点保护。 3、分组传送网技术的研究走向 今天围绕分组传送网架构,只有两种技术在可扩展性和可管理特性上满足要求。即以太网包传送(EOT)技术和多协议标记交换/伪线仿真(MPLS/PW)技术。这两种技术都能支持多协议包的传送,都具有全球范围内的可扩展性。以太网技术具有成本低、具有本征的多播支持能力和较好的管理能力,所以以太网包传送(EOT)技术基本上在现有以太网技术上进行改进,添加标签或帧头。而MPLS技术则是成熟的标签交换协议,具有较为成熟的流量工程(TrafficEngineering)能力和保护机制。 3.1基于以太网的包传送技术 既然以太网是一种用户领域的技术选择,因而排除可能出现的互通问题,利用和保护客户驱动的投资,把以太网技术加以改进作为在运营商领域一种选择,是很自然的事。然而传送技术的转换是一个长期过程,也意味一种承诺。其结果是新技术大规模应用的先决条件必须是具有比较综合全面的功能。从运营商的角度来说,现有的以太网技术还缺乏上一节所说的OAM能力,流量管理能力和可扩展性。 网络的神奇作用吸引着越来越多的用户加入其中,正因如此,网络的承受能力也面临着越来越严峻的考验―从硬件上、软件上、所用标准上......,各项技术都需要适时应势,对应发展,这正是网络迅速走向进步的催化剂。 |