win7系统下载
当前位置: 首页 > 硬件软件教程 > 详细页面

如何应用SPSS一元线性回归容易预测销售

发布时间:2024-05-04 文章来源:深度系统下载 浏览:

SPSS由IBM公司出品,它提供了包括描述性统计、推断性统计、因子分析、聚类分析、回归分析等多种统计分析功能,并包括文本分析、机器学习算法、数据分析模型等。SPSS的界面友好,易于操作,能够快速从数据中提取有用的洞察和分析,广泛应用于教育、心理、医学、市场、人口、保险等多个研究领域,也用于产品质量控制、人事档案管理和日常统计报表等。

本文将针对分析过后的数据进行详细解读。在解读过程中,我们需要求得方程式的系数,并判断系数的拟合程度、方程式的统计学意义。

一、使用的数据

本文分析所用的数据是一组包含客流量与销售额的数据,研究的是以客流量为自变量、销售额为因变量的线性关系。

示例数据

图1:示例数据

二、解读检验结果

1.模型拟合效果

模型摘要中的R方是判定系数,其数值越接近于1,表明方程的拟合优度越好,一般需要大于0.6。

从如图2所示的模型摘看到,求得的一元线性回归方程的R方为0.839,说明本例分析所得的回归方程拟合效果良好。

模型摘要

图2:模型摘要

在判定回归方程拟合优度良好的情况下,查看ANOVA分析中的“回归模型”方差分析。如图3所示,“回归模型”的显著性值为0.00<0.05,说明该“回归模型”具有显著的统计学意义,也就是说,客流量与销售额之间存在着显著的线性回归关系。

ANOVA检验2.构建模型表达式 图3:ANOVA检验2.构建模型表达式

在判定回归模型具有显著统计学意义的前提下,进一步检验求得的系数是否通过T检验。该T检验的原假设为求得的回归系数不具有统计学意义。

如图4所示,可以看到回归系数(客流量对应的系数)的显著性数值为0.00<0.05,拒绝原假设,也就是说方程的回归系数具有统计学意义,可构建y=12.821x-2644.658的一元线性回归方程。

选择变量

图4:选择变量

3.残差相关性分析

通过上述的分析,我们已经可以认为构建的一元线性回归方程y=12.821x-2644.658具有统计学意义,但是否可用于预设因变量的值,还需要通过残差相关性分析。如果残差存在自相关的话,模型的预测准确度将会不高。

如图5所示,模型的D-W值(德宾-沃森值)为2.060,查阅德宾-沃森表得到,样本量n=198(采用200样本量D-W值),控制变量数量k=1,其下临界值LD=1.664、上临界值UD=1.684。

根据D-W值的判定规则,本例的D-W值符合“如果UD

D-W检验

图5:D-W检验

另外,再通过残差直方图看到,残差的分布趋近于正态曲线的分布。

残差直方图

图6:残差直方图

再结合正态P-P图分析,可以看到,数值的分布近似于直线,说明残差的正态性良好。

在满足残差无自相关性、服从正态分布的前提下,说明本例构建的一元线性回归方程具有良好的预测性,可通过为自变量代入数值,求得预测的因变量。

残差P-P图

图7:残差P-P图

三、小结

综上所述,在使用IBM SPSS Statistics构建一元线性回归方程时,需要通过判定系数R方判断回归方程的拟合优度,并检验回归方程、方程系数的是否具有统计学意义。


世界上许多有影响的报刊杂志就SPSS给予了高度的评价。
本文章关键词: SPSS一元线性回归区分